DNV·GL

Superelement approach in Sesam and Bladed

Coupled analysis for offshore wind turbines

DNV GL

28 September 2017

Topics of this seminar

- Introduction to Bladed and Sesam
- Superelement vs integrated analysis
- Demonstration of superelement process
- Superelement verification

Quick introduction to Sesam and Bladed

Offshore wind – combining DNV GL competencies

DNV GL has 25+ years of hands-on experience with wind turbines.

Global leader in risk management of offshore wind projects

Bladed

Sesam & Bladed work together – increasing engineering efficiency

Standards referred

DNVGL			
DNVGL	IEC 61400-3		
	Edition 1.0 2009-02		DNV·GL
Fatigue design of offshore steel structures	NORME INTERNATIONALE	STANDARD	
	Wind turbines – Part 3: Design requirements for offshore wind turbines Eoliennes – Partie 3: Exigences de conception des éoliennes en pleine mer	DNVGL-ST-0126 Edition April 2016 Support structures for wind turbines	
The electronic pdf version of this document found through http://www.dnugi.com is the officially binding version. The documents are available free of charge in PDF format.			

Offshore load analysis methodologies

a) Integrated analysis b) Superelement analysis

a) Integrated Analysis

Integrated Analysis

Integrated Analysis

- ✓ Captures all dynamic feedback from combined wind and wave loading
 - Easy for FD and WTG designer to optimise design of whole structure
 - Wind/wave load calculation only done once
- ✓ Bladed encryption feature prevents need to share foundation design
- Limit on structural complexity of jacket (e.g. no shell elements)
- ✗ WTG designer takes responsibility for wave loading and jacket definition

b) Superelement Approach

Creating a Superelement

- Superelement created using Craig-Bampton reduction
 - Interface: six degrees of freedom on top of jacket
 - Mode shapes: Eigen modes of original jacket, adding additional degrees of freedom
 - Modes give reduced [K], [M], [F] for use directly in Bladed

Superelement Analysis

Superelement Analysis

- Wave load calculation responsibility remains with FD
- FD does not need to share design details with WTG designer
- Allows complex jacket features to be modelled (e.g. shell elements)
- Design load cases simulated twice
- More difficult for FD and WTG designer to optimise design of whole structure
- ✗ Hydro-elastic feedback not accounted for (wave loads known at start)

Superelement method demo in Sesam and Bladed

Superelement Analysis – part 1 (superelement creation)

Superelement creation: what is a superelement?

- Boundary node is at the interface, and therefore only contains 6 DOFs
- Additional DOFs are added into superelement to improve dynamic response of superelement
 - Additional DOFs are based on original model's internal mode shapes (i.e. with fixed interface)
 - How many modes to include? \rightarrow Run spectral and spatial convergence

Superelement Analysis – part 2 (wind turbine dynamic analysis)

Superelement Analysis – part 3 (re-simulation and postprocessing)

Superelement method verification

Verification - aim

- Verify superelement workflow
 - Superelement creation in Sesam
 - Import and simulate with superelement in Bladed
 - Export of Bladed motions and loads to Sesam for post-processing
- Demonstrate alignment integrated and superelement results

Verification – 3 models

Verification – interface loads

Verification – tower top displacements

Verification – node displacements

Verification - conclusion

- Verified implementation of
 - integrated design workflow
 - superelement analysis workflow
- Verification of
 - Model and loads transfer
 - Load and deflection predictions
 - Results transfer

Summary

30 DNV GL © 2017 28 September 2017

Summary

- Sesam and Bladed are well-interfaced:
 - Integrated design approach
 - Superelement analysis approach
- Superelement approach benefits:
 - Wave load calculation responsibility remains with FD
 - FD does not need to share design details with WTG designer
 - Allows complex jacket features to be modelled (e.g. shell elements)
- Well-interfaced tools can save engineering time

Questions?